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In this work, a pressure-based composite grid method is developed
for solving the incompressible Mavier—Stokes eguations on domains
composed of an arbitrary number of overlain grid blocks, where a
canservative internal boundary scheme is devised to ensure that global
conservation is maintained. Issues concerning the differences between
the conservative internal boundary scheme developed for the pressure
correction method with a staggered grid and that commonly used for
density -based methods for compressible flow with nonsiaggered grids
arg discussed. An organizaticnal scheme is developed in order to
provide a general and more flexible means for handling arbitrarily over-
lain grid biocks. Applications of the composite grid method 1o various
model problems with complex geometry are used to illustrate the
characteristics of the present procedure.  © 1993 Academic Press, Inc.

1. INTRODUCTION

The numerical solution of the Navier-Stokes equations
using finite difference methods requires the generation of a
grid for the region of interest. For many problems of
cnginecring interest, the gencration of a single grid which
discretizes the domain adequately for resolving the various
flow features is very difficult or even impractical. This
problem can be overcome to a limited extent by applying
sophisticated grid generation schemes to construct a single
grid with suitable characteristics; however, the degree of
satisfaction achieved with such a process is highly problem
dependent. An alternative approach is to partition the
domain into a number of distinct blocks, each block being
topologicaily simple. Grids can then be independently
generated for each block with little difficulty. Furthermore,
the grid resolution in each subdomain can be better
controlled according 1o the fluid physics there.

For such a composite grid (or multipie-block) solution
procedure, in which the governing equations are solved
independently within each of the blocks, one of the main
issues of importance concerns the transfer of information
between the different blocks in the system. Strategies
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for transferring information between the blocks can be
generally classified as cither conservative or non-conser-
vative. For many multiple-block solution techniques,
information is transferred from block to block strictly via
interpolation. This is the case for many multiple-block
schemes using overlain grids [1-3], or abutting (patched)
grids [4]). For some techniques employing the so-called
Chimera grids, information transfer via interpolation is the
only practical recourse, as the implementation of conser-
vative transfer schemes becomes very difficult. For some
applications, interpolation proves to be satisfactory;
however, in many instances in which large solution
gradients, or elliptic features such as recirculation exist in
the vicinity of block boundaries, significant errors can be
introduced into the soiution. In addition, for schemes based
upon a contro! volume formulation, the use of a non-
conservative interface treatment, such as direct interpolation,
may result in incompatible boundary conditions which can
prevent the algorithm from converging, unless due attention
is given to the choice of the interpolation scheme, which, in
essence, makes the interface treatment consistent with the
conservative concept. Hence, a conservative approach is
preferable for transferring information between the grid
blocks in the system. Much work has been done in this
area, mainly in the context of density-based methods for
compressible fluid flows. Rai [5-6], for example, has
successfully developed and implemented conservative
boundary schemes for Euler equation calculations on
composite patched grids in a general curvilinear coordinate
framework, for both explicit and implicit time integration
schemes. Reggio ef al. [ 7] have also developed conservative
multiple-block strategies for the Euler equations, but using
overlaid grids. In a recent work by Perng and Street [8], a
composite grid technique was developed for solving the
incompressible Navier-Stokes equations using a pressure-
based method with the staggered grid arrangement; however,
the interface treatment used for transferring information
between the blocks is not conservative.
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In this paper, a multipile-block computational procedure
is developed for solving the incompressible Navier-Stokes
equations on domains comprised of an arbitrary number of
overlapping grid blocks. A pressure correction algorithm in
the spirit of SIMPLE {9] i$ used in conjunction with a
staggered grid system to solve the continuity and momen-
tum equations in a sequential fashion within each of the
blocks of the domain, and a conservative interface treat-
ment is used for transferring information between the
blocks. There are a number of merits gained from using a
sequential solution technique like SIMPLE along with a
staggered grid. Sequential solution techniques allow one to
accommodate a different number of cquations depending on
the physics involved, without the need for reformulating the
solution algorithm. In addition, the basic algorithm can be
extended in a unified framework to handle the various flow
regimes, from incompressible to hypersonic [ 10-11]. Some
of the merits of the staggered grid include the compactness
of the discretization formulae and the elimination of artifi-
cial pressure boundary conditions. While the use of a
staggered grid increases the complexity of the numerical
scheme, we believe the basic merits of the staggered grid,
mentioned above, outweight the drawbacks. With the use of
a pressure correction method along with a staggered grid,
new issues arise concerning the implementation of a conser-
vative block boundary scheme for transferring information
between the blocks of the system. The present work serves
as a first step in illuminating the general issues involved in
the development of a globally conservative multiple-block
solver using a pressure correction scheme with the staggered
grid system. The technique developed here can be incor-
porated in its entirety into a solution algorithm using
curvilinear coordinates [ 12, 137].

2. GOVERNING EQUATIONS AND
NUMERICAL ALGORITHM

The governing equations used here are the steady,
incompressible two-dimensional Navier-Stokes equations,
along with the corresponding form of the continuity
equation, written in conservative form as

el =0 (1a)
'aa;(f?uu)-i--a%(puv): _%+%(pa_i)
+6%(“Z—u) (1b)
%(puvné—(puv): _g_iJ’aix(”%)
+a—i("?) (1)
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According to SIMPLE [9], an initial guess is first made
for the velocity and pressure field. The momentum equa-
tions are then solved (o yield updated estimates for the
velocity field, Next, a pressure correction equation is solved
to give an updated estimate of the pressure field. The
velocity field obtained above is also corrected using the
pressure corrections to obtain a continuity satisfying
velocity figld at each iteration. If the continuity and momen-
tum equations are not satisfied to the desired tolerance, then
the process is repeated using the current estimates of the
velocity and pressure fields. A staggered gnd system,
showing the physical locations of the two velocity
components, pressure, and density associated with the grid
point (4, j) is shown in Fig. 1.

Discretization of the Momentum Equations

Discretization of the momentum equations is accom-
plished using a control volume approach. Figure 2 shows a
finite volume grid representation for a « control volume.
The notation shown in the figure, and adopted here
throughout, is standard for the SIMPLE algorithm with the
staggered grid system. Upon integrating the u-momentum
equation over the # control volume limits, one arrives at the
general form of the conservation equation for #-momentum
as

dpup= ¥ )

i=E W NS

A+ (pw— pe) Ay

The coefficients 4, and A4, represents the combined convec-
tion and diffusion fluxes associated with each of the nodes.
In order to aid the discussion later needed for the develop-
ment of the multiple-biock aigorithm, representative expres-
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FIG. 1. Staggered grid system showing location of velocity

components and scalar variables associated with grid point (7, j).
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FIG. 2. U control volume used in deriving the discretized form of the
w-momentum equation.

sions of these A4, terms are given, where the second-order
central difference scheme is adopted for both the convection
and diffusion terms, as

Apy=D,(1—05|F,/D,|+[—F.,00] (3a)
A=D1 —05|F,/D,|)+ [F,, 0.0] (3b)
Ay=D,(1-05|F,/D,|)+[—F,. 00] (3c)
As=D,(1-05|F,/D.|)+ [F., 0.0] (3d)

AP=AE+AW+AN+AS+(FM_F.;+Fe_Fw]' (36)

Equations {3) are part of a generalized form capable of
representing several different discretization schemes, as
reported in [ 147]. The F's and Ds represent the convection
and diffusion flux coefficients at the faces of the control
volume, and are given by

F,=(pu), 4y,

F,=(pu), 4y,
(pu) (4a)
F,=(pv), 4x, F,=(pv), Ax
p. Ay n,. 4y
= A _D = -
D. (8x),” ¥ (6%)w
A A (4b)
o AX o, Ax
D= ., D= .
(0¥, (dy),

In the above expressions, [a, b] represents the maximum
of the two arguments « and b. It is noted that the terms
appearing within the parenthesis of Eq. (3¢) are collectively
equal to zero because of the mass continuity constraint.
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They are explicitly retained for helping the understanding of
the interface treatment to be presented later, A similar
procedure can be performed for the v-momentum equation
by integrating the p-momentum equation over a v control
volume, resulting in

Apvp= Y A+ {ps—py)4x, (5)

iI=EWNS

where the coeflicients are identical to those previously given
for the v-momentum equation.

Discretized Form of the Pressure Correction Equation

The continuity and momentum equations can be used to
formulate a pressure correction equation. The pressure
correction is used to update the pressure field, and in con-
junction with the velocity correction formulas, to obtain a
continuity satisfying velocity field at each iteration step [9].
In order to aid the discussion of the multiple-block proce-
dure to be developed later, the discretized form of the
pressure correction equation is presented below:

Gppp=darpr+aypwtaypytasps+h (6a)
_ e(Ay)z — \\‘(Ay)z
E= """ s W=
A A
P Py (6b)
L _plaxP )
N AP,, H A APS
ap=a£+aw+f1~+as (6C)
b=[(pu*),—{pu*).] 4y + [{pr*),— (pv*},] 4x.
(6d)

In the above expressions, the starred velocity components
represent those values obtained from the most recent
solution of the momentum equations. The A, terms are the
coefficients A, in the discretized forms of the momentum
equations for the velocity components located on the faces
of the pressure prime control volume.

3. COMPOSITE GRID CALCULATION
PROCEDURE

As stated earlier, the goal of this study is to deveiop a
computational procedure for soiving the incompressible
Navier-Stokes equations on domains composed from an
arbitrary number of overlapping grid blocks, with each
capabie of having a user chosen discretization. In order to
establish a basis for the following discussion, a repre-
sentative example of such a composite grid is shown in
Fig. 3. For the sake of developing the composite grid proce-
dure, the Cartesian grid system is considered to simplify the
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FIG. 3. Example of a composite grid composed of three overlapping grid blocks.

presentation. The ideas discussed below can be extended in
their entirety to a curvilinear grid system. The development
of an organizational methodology for handling arbitrarily
constructed composite grids will be the first point of discus-
sion. The global conservation conditions for the staggered
grid are next discussed, followed by the development of the
conservative internal boundary scheme,

Organization of Composite Grids

One of the primary difficulties in dealing with composite
grids is the organizational task of determining the
information flow from block to block. For a composite grid
consisting of only two overlapping grid blocks, or for any
composite grid in which no more than any two blocks in the
system overlap at any single point in the domain, the chan-
nel of information flow is already determined, since there is
only one neighboring block for each block in the system
which can provide the required internal boundary data.
However, for cases in which three, or even more grid blocks
in the composite grid system overlap, the question of where
internal boundary information is to be obtained becomes
more difficult. In these cases, several grid blocks may be
available to provide information across some parts of an
internal boundary, while for other parts of the boundary,
information may only be obtained from one other neigh-
boring block. An example of this may be seen again from the
simple composite grid system shown in Figure 3. Here, for
the lower side of block two, which is entirely an internal
boundary, for the right portion of this boundary, informa-
tion can be obtained only from block three; however, for the

left portion of this boundary, information may be obtained
from either block one or block three.

It is apparent that the problem of handiling composite
grids consisting of multiple overlapping blocks, at least in
terms of information transfer, is equivalent to determining
what information flows across particular segments of each
side of each block in the system. Each block side can have
two types of segments associated with it, which we will
designate as boundary condition segments and internal
boundary segments. Boundary condition segments, which
include both Dirichlet and outflow (i.e., gradient condition)
segments are specified at the outset of the problem, and in
terms of information flow, all required information is
specified via the particular boundary condition for each seg-
ment. Internal boundary segments, on the other hand, are
created by the overlappings of the blocks in the composite
grid. Each side of each block in the system is spanned by a
combination of one or more internal boundary segments
and/or boundary condition segments. Across each of the
internal boundary segments, information is obtained from a
single neighboring grid block. While the internal boundary
segments are essentially determined by the arrangement of
the composite grid system, it should be noted that for com-
posite grids containing regions in which more than two
blocks overlap, each block may not have a unique set of
internal boundary segments. This again relates to the fact
that information may be obtained across portions of the
internal boundaries from more than one of the neighboring
blocks. Thus, some strategy must also be developed for
selecting a set of internal boundary segments for blocks
which have no unigque set. Once the internal boundary
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segments for each side of each block in the composite grid
system have been determined, then along with the boundary
condition segments of the blocks, the complete paths of
information flow into each block are specified, and the
conservative internal boundary scheme can be implemented.

Our procedure for determining a unique set of internal
boundary segments for the internal boundaries of each
block in the composite grid system is as follows: First an
intersection test is performed for each block in the com-
posite grid with every other block to arrive at a preliminary
set of internal boundary segments for that block. For
general composite grids, the internal boundary segments for
some of the internal boundaries may overiap along portions
of the boundaries, resulting in an ambiguity in terms
of information transfer through those portions of the
boundaries. In order to resolve this ambiguity, each block in
the composite grid system is given an overlapping priority,
so that when two internal boundary segments overlap over
a particular portion of an internal boundary, the segment
with the highest priority takes precedence. In this way, a
unique set of internal boundary segments for each internal
boundary of each block in the composite grid can be
obtained. This two-step process for uniquely determining
the internal boundary segments for each block in the system
is best illustrated by example.

Consider again, the composite grid system shown in
Fig. 3. Let us determine a unique set of internal boundary
segments for each internal boundary of block two in this
three-block composite grid. For this block, the entire lower
side is an internal boundary, part of the right side is an
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FIG. 4. Determination of internal boundary segments for block two in
Fig.3: (a) Preliminary internal boundary segments; (b) Final internal
boundary segments.
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internal boundary, and the entire left side is an internal
boundary. First, an intersection of block two independently
with each of blocks one and three is performed. From these
intersection tests, we obtain the preliminary internal
boundary segments shown in Fig. 4a. The number by each
of the segments indicates that segment was created by the
intersection of block two with the block of that number.
For the lower internal boundary as well as the left internal
boundary of block two, the internal boundary segments
overlap over a portion of the boundary, again, corresponding
to the fact that, across these portions of the boundaries,
information can be obtained from more than one block.
Now, we further specify the following overlapping priorities
for each block in the composite grid. Block number one is
given the highest priority, followed by block two, and then
block three. After using this priority information to
eliminate internal boundary segment overlaps, we obtain
the final set of internal boundary segments shown in Fig. 4b,
for each internal boundary of block two. With this set of
internal boundary segments, the information channels
through the internal boundaries are precisely specified.
Along with the boundary condition segments, a complete
specification of the information flow into block two is
obtained. It should be noted that this procedure for deter-
mining the exchange of information within a composite
grid arrangement is quite general and can be applied to
composite grids created from an arbitrary number of grid
biocks overlaid in an arbitrary fashion.

Global Conservation Conditions for the Staggered Grid

Consider the w-momentum equation written in conser-
vative form as

E.+F,=0. (7a)

Integrating this equation over a u control volume gives

{Ee_En) Ay+(Fn_FA)Ax=0’ (8)

i=nj

Ay

| e

FI1G. 5. Single block grid used in deriving global conservation
condition for the u-momentum equation on the staggered grid.

i=ni
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where the terms E, Ay and E, 4y are respectively the total
fluxes of u-momentum through the east and west control
volume faces, and the terms F, Ax and F, Ax are respec-
tively the total fluxes of u-momentum through the north and
south control volume faces.

Now consider the single grid domain shown in Fig. 5 with
uniform spacing in both coordinate directions. Summing
the above equation for a u control volume over all the u
control volumes in the domain yields

ni ni

S=3 Y ((E.—E,) 4y+(F,—F,) 4x

+ 2 (Fnij=nj—Fs|j==2)Ax=O'

=3

9}

Therefore, S is only a summation of the boundary fluxes,
since the interior fluxes for neighboring control volumes
cancel each other out. This equation represents the global
conservation property for any control-volume based
scheme as shown in Eq.(8). Note, however, for the
staggered grid, the boundary in question is not the physical
boundary of the domain as is usually the case when dealing
with a nonstaggered grid, but the boundary formed by the
boundary sides of the u control volumes along the physical
boundary. This boundary will hereafter be referred to as the
global conservation boundary. For the staggered grid
system, three different giobai conservation boundaries exist,
one for the continuity (pressure correction) equation, one
for the w-momentum equation, and one for the v~-momen-
tum equation. The three global conservation boundaries for
the staggered grid covered by the control volumes of the
interior unknowns are shown in Fig. 6.

For composite grids, the global conservation property
also requires that a surmamation of the u control volume
equations over all the # control volumes in the composite
grid results in only a summation of the » momentum fluxes
across the boundary for the composite grid. Note that for
such a summation, the total area of the summation should
be equal to the area formed by an exclusive summation of
the areas enclosed by the global conservation boundaries of
each of the blocks forming the composite grid. By an
exclusive summation, we mean that in an overlap zone
created by the intersection of the global conservation
boundaries of two blocks, the overlap area should only be
included in the control volume summation of one of the two
blocks,

For example, consider the composite grid shown in
Fig. 7a, constructed from two blocks with a horizontal
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FIG. 6, Global conservation boundaries for the staggered grid
(highlighted in bold}: (a) Continuity equation; (b} u-momentum equation;
{c) v-momentum equation.

overlap region. The global conservation boundary for the
w-momentum equation is highlighted in bold. If in the
overlap region, we sum over « control volumes in the upper
block only, then the exclusive overlapping appears as shown
in Fig. 7b. In Fig. 7b, numbers have been given to the
various segments which will be used in the ensuing deriva-
tion of the conditions for global u-momentum conservation.

(a)

8 5 2 (b)
L

FIG. 7. Composite grid eonstructed from two overlapping grid blocks:
(a) Composite grid with uv-momentum conservation boundary highlighted
in bold; (b} Exclusive overlapping used in derivation of global
conservation conditions.
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Summing over all the u control volumes and using the
exclusive overlapping shown in Fig. 7b, we arrive at

LE@~LE@+LF¢+LF&—LF&

+LE@—LE@+th

=[Luﬁdy—LLE@i+[LLEdV—LUE@J
+U;FmaJ&Fﬁ}

The left-hand side of this expression is nothing but the sum-
mation of the boundary fluxes through the u-momentum
global conservation boundary for the composite grid. The
right-hand side of the expression represents the difference in
the summation of the fluxes along the internal boundaries of
the upper block as estimated from the two different blocks
in the composite grid system. Now, for global conservation
of u-momentum, the summation of the u-momentum flux
through the w#-momentum global conservation boundary
should vanish. Accordingly, for global conservation of
u-momentum, we arrive at

(10)

LF¢=LF¢

which state that the w-momentum flux through any internal
boundary must be identical when estimated from the blocks
on either side of the internal boundary. Equations (11) state
that {or global conservation of u-momentum, no u-momen-
tum can be created at internal boundaries. Similar condi-
tions apply for the p-momentum and continuity equations,

Global Conservation Strategy

Because we are using a pressure correction technigue for
solving the governing equations, the global conservation
procedure involves a different strategy than that used with
density-based compressible flow techniques using non-
staggered grids. This is due in part to the nature of the
staggered grid system, but more specifically it is due to the
type of boundary condition used for sclving the pressure
correction equation. Two types of boundary conditions in
general can be used for the pressure correction equation. If
the pressure is known at the boundary, then the value of the
pressure correction at the boundary can be set to zero. If the
pressure is not known at the boundary, then the velocity
component normal to the boundary must be specified.

SBI/I0742-3
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Since, in general, the boundary pressure values are not
known, especially for blocks which are located completely
interior to the physical boundaries of the domain, we have
adopted the use of normal velocity component boundary
conditions in this work exclusively. WNormal velocity
boundary conditions, in fact, can be used quite generally
throughout, even at boundaries where the normal velocity
compenent is not initially known (such as internal
boundaries and outflow boundaries), but which evolves to
a known value as the sequential solution process converges.
With the use of normal velocity boundary conditions for the
pressure correction equation, the pressure field is only
obtained to within an arbitrary constant. However, this
represents no problem in terms of the solution technique,
since the density is unaffected by the magnitude of the
pressure, and for single grid solutions, if a pressure value is
known at a certain point in the field, then the entire pressure
field can be adjusted accordingly, after the solution has been
obtained. However, for composite grids, in which the
governing equations are solved independently within each
block, in a block-to-block iterative fashion, each block in
the system will generate a pressure field independently from
those created in neighboring blocks. It is this characteristic
that requires a different global conservation strategy than
that used in density-based compressible flow solvers applied
to composite grids.

Solution of the continuity (pressure correction) equation
requires the specification of the mass flux into each of the
pressure correction conirol volumes located along the
boundaries of the grid. Similarly, the solution of the u and
p-momentum ¢quations requires the specification of the u
and v-momentum fluxes into each of the respective « and v
control volumes located along the boundaries of the grid.
Each of these control velume fluxes may involve contribu-
tions from fluxes from specified external boundary condi-
tion segments or from fluxes entering through internal
boundaries of the grid. For the case of internal boundaries,
flux contributions must be calculated in such a way that the
global conservation conditions previously outlined are
satishied. A discussion of the exact procedure for achieving
this will be undertaken in the foliowing section. This section
deals with issues concerning the global conservation
strategy that has been adopted for a pressure correction
algorithm with a staggered grid system. Thus, our global
conservation strategy is as follows. Explicit conservation of
mass across the horizontal and vertical sides of the global
conservation boundary for the pressure correction equation
is used to determine the mass fluxes into each of the pressure
correction control volumes along the boundaries of the grid
block in question. Once the mass fluxes have been deter-
mined, then the normal component of the velocity profile
along the horizontal and vertical sides of the grid block can
be determined. From these velocity values, we can compute
the part of the w-momentum fluxes into each of the u
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control volumes along the vertical boundaries of the grid
block which do not involve pressure (e.g., the term
puti — p{du/dx)), as well as the part of the v-momentum
fluxes into each of the v control volumes along the horizon-
tal boundaries which do not involve pressure (e.g., the term
prv - u(0v/dy)). The pressure values required for calcu-
lating the rest of these fluxes are already specified via the
staggered grid arrangement. Since the y-momentum fluxes
into the # control volumes along the horizontal boundaries
do not contain a pressure term (i.e., puv — p(du/6y)), they
can be obtained via explicit conservation, as was done for
the mass luxes. Similarly, this can be done for the v-momen-
tum fluxes into the » control volumes along the vertical
boundaries. In this way, all the required boundary fluxes for
the various control volumes along the boundaries of the
staggered grid block in question are obtained.

For a converged solution to a composite grid problem,
since the pressure fields within each of the blocks of the
system have developed independently from the others and
are only determined ta within a constant within each grid
block, the pressure fields within the various grid blocks
must be corrected in some manner so that they are com-
patible with each other. In order to determine the com-
patibility constants for each block, a normal momentum
balance is performed across some segment of each internal
boundary interface, and the pressure in one of the blocks
sharing that interface is adjusted so that normal momentum
flux across that segment is identical when computed from
either of the two blocks. For the general case in which the
grid lines from neighboring blocks across the interface are
discontinuous, this postprocessing procedure is non-unigque
and dependent upon the choice of the segment over which
the normal momentum flux balance is performed.

Configurations with Internal Obstacles

Since the present interface procedure is designed to satisfy
the conservation laws without artificially imposing the con-
tinuity of solution variables, extra care must be taken in
ensuring that no spurious multiple solutions occur for con-
figurations that contain selid obstacles. For the staggered
grid arrangement adopted here, there is no need to specify
boundary conditions for pressure; this basic merit remains
the same for any multi-block configuration. However,
for multiply connected domains, it is known that extra
boundary constraints need to be prescribed, otherwise the
solution may not be physically correct. An earlier study
conducted by Shyy [15] has established this point clearly.
By solving a channel flow with two outlet branches, besides
the normal extrapolating outflow conditions, an additional
regulatory mechanism is needed. In Shyy [15], it is the ratio
of the mass flux between the two branches that helps the
numerical computation reach a unique and physically
correct solution. This extra condition is a mathematically
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correct procedure, and not a numerical artifact. For
example, Milne-Thompson [16] has studied a potential
flow in a branched canal. In that analysis, the stagnation
point of the flowfield is given a priori, amounting to an
equivalent specification of the mass sphit ratio as well.

In the present formulation, for configurations with inter-
nal obstacles, there is no need to explicitly assign any extra
boundary conditions to facilitate the numerical computa-
tion. The problem arises from the fact that since one does
not have to prescribe any pressure boundary conditions
within each block, potentially, a pressure jump can occur
across a block interface. This jump is physically incorrect
and can result in multiple spurious solutions. To circumvent
this potential pitfall, one can simply enforce a pressure
continuity constraint at the interfaces shared by adjacent
blocks. The practice devised here is that in the course of
iteration, the pressure continuity at interfaces common to
adjacent blocks is enforced via explicit conservation of the
normal momentum through these interfaces. For cases with
internal obstacles, individual grid blocks need this con-
tinuous enforcement of pressure continuity at internal inter-
faces to prevent unphysical pressure jumps from appearing.
As can be observed in the test cases to be presented later, the
present procedure can maintain a physically correct solu-
tion. One should emphasize that the present treatment of
pressure is completely consistent with the spirit of the
staggered grid; i.e., no artificial pressure boundary condi-
tion is used to affect the final solution; the pressure con-
tinuity is enforced strictly via a normal momentum balance
between adjacent blocks to avoid creating a nonphysical
flowfield.

Explicit Conservation Procedure

Suppose we wish to update the values of the dependent
variables in one of the blocks of a composite grid. These
calculations require that the fluxes of mass and momentum
through the boundaries of the block into the various
boundary control volumes be specified. According to the
global conservation strategy previously outlined, explicit
conservation of the mass and w-momentum flux through the
horizontal boundaries and the mass and v-momentum flux
through the vertical boundaries, provides all of the informa-
tion required for calculating the fluxes into all of the
boundary control volumes. In this section, we detail the
procedure for explicitly conserving mass and ¥-momentum
through horizontal internal boundaries, The same concepts
apply for explicitly conserving mass and v-momentum
through vertical internal boundaries.

Consider a composite grid comprised of two blocks with
a horizontal overlap region. Figure 8 shows a blowup of
part of the overlap region, where the upper block (whose
dependent variables we wish to update) is drawn with
dotted lines and the neighboring lower block is drawn with
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FIG. 8. Blowup of horizontal overlap region with a pressure correction control volume, ABCH, for block one highlighted.

solid lines, The upper block will hereafter be denoted as
block one and the lower block as block two. In the figure,
a pressure correction control volume along the lower
boundary of block one has been shaded. In order to for-
mulate the discrete form of the pressure correction equation
for this contro! volume, the mass flux through the lower
boundary of the control volume (segment 4B) must be
obtained. Since segment 4B lies completely within block
two, all the information required for calculating the mass
flux through the segment is obtained from this block. Segment
AB is comprised of a number of sub-segments, formed by
the intersection of the vertical grid lines of block two with
the segment, In this case, segment AB is comprised of five
complete sub-segments (forming the center portion of the
segment) and two partial segments (on the left and right
ends of segment A4 B). Each of these sub-segments contributes
a portion to the total mass flux through 4B,

The mass flux contribution for a typical sub-segment in
block two is obtained in the following manner. The constant
normal velocity component along the segment is obtained
using a linear distance-weighted interpolation from the
velocity components just above and below, located within
block two. For example, consider the second sub-segment,
denoted as ab, of segment A8, shown in Fig. 8. The normal
velocity component along the entire sub-segment is taken to
be that at the center of the sub-segment, and is denoted v,.
The value of v, is obtained based on a linear interpolation
within block two from the staggered grid values located
directly above and below, which are also shown in the
figure. Once the segment velocity has been found, the mass
flux contribution is obtained by multiplying this value by
the density and the segment length. This calculation proce-

dure results in a piecewise constant mass flux distribution
over the segment AB. A piecewise constant mass flux dis-
tribution allows the correct mass continuity to be recovered
for an interface with continuous grid lines from the two
adpacent blocks. With the total mass flux from block two
denoted as mfiux,, and assuming that the north, west, and
cast pressure correction neighbors are internal unknowns
of block one, then the discretized form of the pressure
correction equation for the pressure correction control
volume 4BCD becomes

QppPp=asPrtawpPu+anpy+b {12a)

(12b)

dp=dgtay+ay,
where the coefficients «; are as given before (except for a,
which has been set to zero since we consider the mass flux

obtained to be a known guantity), and the source term b
takes the form

b= [{pu*)., — (pu*), X4y}, + mftux; — {pv*), (4x), .
(13)

Once the mass flux into the pressure correction control
volume has been calculated, the velocity component at the
control volume boundary for block one, denoted v, in the
figure, is given by

mflux-
v, = .
’ pl4x),

(14)
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Thus, as previously stated, conservation of mass along the
horizontal boundaries provides both the boundary condi-
tions for each of the pressure correction control volumes
along the boundary, as well as the nermal velocity compo-
nent profile along the boundary. Once this profile is deter-
mined, then all the information required for the calculation
of the parts of the v-momentum fluxes not involving
pressure {i.e., pov — u(dv/cy)) is available.

The procedure for explicitly conserving the #-momentum
fluxes into each of the u control volumes along horizontal
boundaries is similar to that for explicitly conserving mass.
Consider again, a composite grid comprised of two blocks
with a horizontal overlap region. Figure 9 shows a blowup
of part of the overlap region, where the upper block (whose
dependent variables we wish to update) is again denoted as
block one, and the lower neighboring block as block two. In
the figure, a u control volume, labelled ABCD, along the
lower boundary of the block has been shaded. In order to
formulate the discrete form of the y-momentum equation
for this control volume, the w-momentum flux through the
lower boundary of the control volume (segment AB) must
be obtained. Again, segment AB is comprised of a number
of sub-segments; however, in this case the sub-segments are
defined by the « control volumes in block two. Consider the
sub-segment ab shown in the figure. The v-momentum flux,
including the convective and diffusive components, through
this sub-segment, denoted uflux,, is calculated as

uflux,, = [D(1 — 0.5 |F/D]) + [F, 00] ] u,
—[D(1—05 |F/D))+[—F,00]] 1y, (15)

where the terms u,, and u, are respectively the u velocity
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components located on the staggered grid of black two just
above and below the segment. In this expression, the
second-order central difference scheme has been used for
both the convection and dilfusion terms for illustration
purposes. The terms F and D represent the convection and
diffusion fluxes through the segment and are given as

_pdx
(A,V)z,

The term Ax represents the length of the sub-segment, and
(dv}, is the constant vertical grid spacing in black two. The
quantity v, is the velocity component calculated via
bi-linear interpolation from the neighboring » component
values of block two at the center of the segment. With the
total flux contribution from block two denoted as uflux,
and assuming that the north, east, and west neighbors of the
1 boundary control volume in block one are internal
unknowns, the discretized form of the w-momentum
equation for the controi volume becomes

D

F=pv(4x). (16)

APHP:AEUE+AWuW+ANuN_(Fn+FE—Fw)uP
+(pw— pe)dy) + uflux, (17a)
Ap=AptAw+ Ay (17b)

In the original formulation for the v control volume shown
in Eq. (3¢), the term (F,- F,+ F.— F,) up is identically
zero for a continuity satisfying velocity held and can be
dropped. The term (F,+ F,,— F.)up remains in Eq. (17a)
because A , is now computed without the contribution from
Ag. Due to the interface treatment, A, and its corre-

{Avh
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%
~— | — lr !
Block 2 | = | —== | By)
I L

u control volume

id line
g boundary

FIG. 9. Blowup of horizontal overlap region with a u control volume, 4 BCD, for block one highlighted.
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sponding component in A, is now explicitly given in the
form of uflux,. The term (F, + F,,— F,) can be replaced by
F, and compuied using the normal velocily component
profile at the boundary obtained from explicitly conserving
mass.

In the examples above, illustrating the explicit procedure
for conserving mass and w-momentum across horizontal
boundaries, all the required information was obtained from
a single neighboring block. 1t should be noted here, that in
a general composite grid, for any control volume located
along a boundary, contributions to the total flux into the
control velume may be required from any number of
neighboring blocks and/or externally imposed boundary
conditions. Since the path of information flow into each
block is entirely specified via boundary segments, we can
determine which neighboring block or boundary condition
is to provide the required information across a particular
portion of a control volume boundary. Once this is known,
then if a neighboring block is required to provide the infor-
mation, the flux through that portior can be calculated as
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described above; and if a boundary condition is required,
then the flux across that portion can be calculated
accordingly. '

4. RESULTS

In order to demonstrate the capability of the composite
grid procedure which has been developed, the results from
three different cases will be presented. The first case is that
of an r-shaped lid-driven cavity composed of three over-
lapping grid blocks. The next two cases involve two different
multiply connected regions, one, a channel with two inter-
nal baffles, and the other a CFD configuration. All cases
were computed using the second-order central difference
scheme for both the convection and diffusion terms.

n-shaped Cavity

In this case, we compute the flow in a Jid-driven n-shaped
cavity for a2 Reynolds number of 2000 based on the cavity

(b)

n-shaped cavity: (a) Physical problem with boundary conditions; (b} Composite grid; (c¢) Stream function contours {Re = 2000).
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width and lid velocity. The physical problem with boundary
conditions is shown in Fig. 10a. The grid used is shown in
Fig. 1Gb. Three grid blocks are used to cover the domain.
Biock one which covers the main body of the cavity has a
resolution of 81 x 57. Biocks two and three, which cover the
legs of the cavity both have a resolution of 49 x 51. The grid
spacings for blocks two and three are ¢xactly half of those
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FIG, 11.
contours {Re = 800); (c) Pressure contours (Re = 800).
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for block one, in both directions. Blocks two and three over-
lap block one in horizontal strips which have a thickness of
one row of coarse grid cells or two rows of fine grid cells.
For this case, use of direct interpolation for supplying the
required internal boundary information results in incom-
patible boundary conditions which prevent the algorithm
from converging, This problem exists for all cases in which

Channel with baffles: (a) Physical probiem and grid block arrangement with overfap regions indicated by dotted lines; (b} Stream function
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an interior block exists which does not contain an outflow
boundary whose velocities can adjust to satisfy the global
mass continuity constraint. With the interface treatment
adopted herein; no such problem exists. Figure 10c displays
the stream function contours obtained using the current
procedure. A primary recirculation region exists within the
main body of the cavity. Two secondary recirculation
regions are seen associated with the primary recirculation,
one whose center is located within the left leg of the cavity
and the other whose center lies above the right leg of the
cavity. Both secondary recirculation regions pass smoothly
through the internal boundaries separating the fine grid
blocks of the cavity legs from the coarse grid block of the
main body of the cavity.

Channel with Baffles

In this case, we compute the flow through a multiply con-
nected region, namely, a channel with internai baffies for a
Reynolds number of 800 based on the configuration width.
The physical configuration along with the block arrange-
ment is shown in Fig. 11a. The composite grid used for this
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case consists of seven grid blocks, each having the same con-
stant grid spacing. Block one has a resolution of 21 x 56,
block two, 101 x21, block three, 21x71, block four,
41 x 71, biock five, 21 x 71, block six, 101 x 21, and block
seven, 21 x 56. The blocks in the composite grid are con-
nected by overlap regions that are five grid cells thick and
which are shown in the figure with dotted lines. Streamlines
of the flow are shown in Fig. [ 1b, Two fairly large recircula-
tion regions exists on either side of the entrance into the
channel. A large recirculation region also exists in the center
of the middie passage of the channel, created due ‘to the
large flow deflection angle caused by the impingement of the
main flow on the baffle located near the entrance. Some of
the main flow which initially passed through the leftmost
passage of the channel is drawn deep into the middle
passage, encompassing the recirculation region there, before
being drawn out by the main flow through the middle
passage to the channel exit. Pressure contours are displayed
in Fig. 11c. From this figure it is seen that the numerical
computation yields a physicaily realistic solution with no
pressure jurnps across the internal boundaries -separating
the grid blocks, consistent with our expectation of the block
interface treatment.
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FIG. 12. CFD configuration: {a) Physical problem with boundary conditions; (b) Grid block arrangement; (¢) Stream function contours

(Re = 1000).
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CFD Configuration

In this case, we demonstrate the ease with which the
current procedure can handle problems with very complex
geometry. Figure 12a shows the configuration studied,
where we have the internal obstacle CFD inside a cavity
with sliding upper and lower walls and entry and exit jets on
the left and right walls, respectively. Figure 12b shows the
multi-block configuration used to solve the problem. The
grid consists of 11 individual grid blocks, 10 of which are
used to form the interior portion of the cavity, and one
which is used on the interior of the letter . The problem
prescribed on the block forming the interior of D is actually
a separate Jid-driven cavity flow running simultancously
with the problem prescribed in the main cavity. Both flows
are computed for a Reynolds number of 1000, based on the
lid velocity and cavily width of each problem. Figure 12¢
displays the streamfunction contours.

5. CONCLUDING REMARKS

In this study, a flexible composite grid procedure has
been developed for solving the incompressible Navier—
Stokes equations on domains composed of an arbitrary
number of overlapping grid blocks. A pressure correction
technique is used, along with a staggered grid system, to
solve the governing equations independently within each of
the blocks of the composite grid. A conservative internal
boundary treatment is used for transferring information
between the blocks. An organizational scheme has been
presented which allows us to implement the conservative
internal boundary scheme in a straightforward, systematic
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manner. Several examples have been given, showing the
utility  of the composite grid procedure in handling
problems with complex geometry. The methodology
developed herein can make a useful contribution in solving
many problems with complex geometry.
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